徐明霞 1†于浩海 *†路大治 孙洵 **[ ... ]张怀金 
作者单位
摘要
山东大学晶体材料国家重点实验室,山东 济南 250100
以磷酸二氢钾(KDP)/磷酸二氘钾(DKDP)、三硼酸锂(LBO)、硼酸氧钙钇(YCOB)和硅酸镓镧族铌酸镓镧(LGN)为代表的非线性光学晶体已经在紫外到中红外的系列激光技术中获得了重要应用,长期受到国内外同行的广泛关注,其品质的提升和口径的扩大成为了当前国际竞争的焦点。着眼于强激光的重要需求,综述了KDP/DKDP、LBO、YCOB和LGN等重要非线性光学晶体的研究现状,介绍了其在大尺寸单晶生长及非线性光学性能等方面的研究进展,分析其在强激光非线性光学领域的应用前景。最后讨论了强激光用非线性光学晶体可能的发展方向和重点。
非线性光学 非线性光学晶体 晶体生长 频率转换 光参量啁啾脉冲放大 
激光与光电子学进展
2024, 61(1): 0116004
Author Affiliations
Abstract
Shandong University, State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Jinan, China
Electron–phonon coupling can tailor electronic transition processes and result in direct lasing far beyond the fluorescence spectrum. The applicable time scales of these kinds of multiphonon-assisted lasers determine their scientific boundaries and further developments, since the response speed of lattice vibrations is much slower than that of electrons. At present, the temporal dynamic behavior of multiphonon-assisted lasers has not yet been explored. Herein, we investigate the Q-switched laser performance of ytterbium-doped YCa4O(BO3)3 (Yb:YCOB) crystal with phonon-assisted emission in nanosecond scales. Using different Q-switchers, the three-phonon-assisted lasers around 1130 nm were realized, and a stable Q-switching was realized in the time domain from submicroseconds to tens of nanoseconds. To the best of our knowledge, this is the longest laser wavelength in all pulse Yb lasers. The minimum pulse width and maximum pulse energy are 29 ns and 204 μJ, respectively. These results identify that the electron–phonon coupling is a fast physical process, at least much faster than the present nanosecond pulse width, which supports the operation of multiphonon-assisted lasers in the nanosecond range. In addition, we also provide a simple setup to create pulse lasers at those wavelengths with weak spontaneous emission.
pulse lasers electron–phonon coupling nanoseconds Q-switch 
Advanced Photonics Nexus
2023, 2(5): 056004
Author Affiliations
Abstract
1 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
2 e-mail: liangfei@sdu.edu.cn
3 e-mail: haohaiyu@sdu.edu.cn
High-harmonic generation in the ultraviolet region is promising for wireless technology used for communications and sensing. However, small high-order nonlinear coefficients prevent us from obtaining high conversion efficiency and functional photonic devices. Here, we show highly efficient ultraviolet harmonic generation extending to the fifth order directly from an epsilon-near-zero indium tin oxide (ITO) film. The real part of the annealed ITO films was designed to reach zero around 1050 nm, matching with the central wavelength of an Yb-based fiber laser, and the internal driving electric field was extremely enhanced. A high energy conversion efficiency of 10-4 and 10-6 for 257.5 nm (fourth-order) and 206 nm (fifth-order) ultraviolet harmonic generation was obtained, which is at least 2 orders of magnitude higher than early reports. Our results demonstrate a new route for overcoming the inefficiency problem and open up the possibilities of compact solid-state high-harmonic generation sources at nanoscale.
Photonics Research
2021, 9(3): 03000317
Author Affiliations
Abstract
1 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
2 Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 College of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Praseodymium-ion-doped gain materials have the superiority of lasing at various visible wavelengths directly. Simple and compact visible lasers are booming with the development of blue laser diodes in recent years. In this Letter, we demonstrate the watt-level red laser with a single blue laser diode and Pr:YLiF4 crystal. On this basis, the passively Q-switched pulse lasers are obtained with monolayer graphene and Co:ZnO thin film as the Q-switchers in the visible range.
140.3480 Lasers, diode-pumped 140.3540 Lasers, Q-switched 140.7300 Visible lasers 
Chinese Optics Letters
2019, 17(7): 071402

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!